Published On : Sat, Aug 12th, 2017

This New Material Could Let Phones And Electric Cars Charge in Seconds

Advertisement


Nagpur: Finding time to stop, plug in and recharge could become history, with scientists developing a new electrode design that could charge batteries in seconds instead of hours.

They say it could solve not only the pain of recharging phones, but also solve one of the primary issues holding back the electric vehicle market.

Previous research has looked at the use of supercapacitors as an energy storage device for portable electronics. Supercapacitors release energy in large bursts, and have incredible potential when it comes to powering our technology.

The problem is they can only be used for rapid charge/discharge cycles rather than long term energy storage.

Now a team from Drexel University has combined the properties of a supercapacitor with that of traditional batteries with large storage capacities by using a material called MXene.

“This paper refutes the widely accepted dogma that chemical charge storage, used in batteries… is always much slower than physical storage used in electrical double-layer capacitors, also known as supercapacitors,” said lead researcher Yury Gogotsi from Drexel’s College of Engineering.

“We demonstrate charging of thin MXene electrodes in tens of milliseconds. This is enabled by very high electronic conductivity of MXene. This paves the way to development of ultrafast energy storage devices than can be charged and discharged within seconds, but store much more energy than conventional supercapacitors.”

MXene is a flat nanomaterial that looks like a sandwich: consisting of oxide ‘bread’ with a conductive carbon and metal ‘filling’. When they are made, the MXene layers stack on top of each other like Pringles.

The scientists changed the structure of the MXene by combining it with a hydrogel, turning the Pringle stack into a structure more like swiss cheese allowing the ions to flow freely.

“In traditional batteries and supercapacitors, ions have a tortuous path toward charge storage ports, which not only slows down everything, but it also creates a situation where very few ions actually reach their destination at fast charging rates,” said one of the team, Maria Lukatskaya.

Thanks for reading hope you liked!!

—Sanket Wankhede